A new methodology for anisotropic mesh refinement based upon error gradients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic mesh adaptation based upon a posteriori error estimates

An anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is considered. The adaptation method generates anisotropic adaptive meshes as quasiuniform ones in some metric space. The associated metric tensor is computed by means of a posteriori hierarchical error estimates. A global hierarchical error estimate is employed in this study to obtain reliabl...

متن کامل

A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional informat...

متن کامل

An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement

In this paper, we extend the work in [W. Cao, Math. Comp., to appear] to functions of n dimensions. We measure the anisotropic behavior of higher-order derivative tensors by the “largest” (in certain sense) ellipse/ellipsoid contained in the level curve/surface of the polynomial for directional derivatives. Given the anisotropic measure for the interpolated functions, we derive an error estimat...

متن کامل

Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations

This article considers a posteriori error estimation and anisotropic mesh refinement for three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric interior penalty discontinuous Galerkin discretization which has previously been developed for the compressible Navier-Stokes equations in two dimensions is extended to three dimensions. Symmetry boundary conditions are give...

متن کامل

Anisotropic Mesh Refinement for Three-dimensional Diffusion Simulation

We present a computational method for locally adapted conformal anisotropic tetrahedral mesh refinement. The element size is determined by an anisotropy function which is governed by an error estimation driven ruler according to an adjustable maximum error. Anisotropy in refinement is taken into account to reduce the amount of elements compared to strict isotropic refinement. The spatial resolu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2004

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2004.01.006